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Abstract—Cyber-physical production systems are composed of
a multitude of subsystems from diverse vendors and integrators,
connected in a distributed fashion. An undesirable phenomenon
in one system might cause a misbehavior in another connected
system. Searching for the root cause of this misbehavior quickly
becomes very tedious as many possible search directions exist.
This paper proposes an approach and algorithm to tie together
information available in design-time and runtime models. This
then allows, in conjunction with observed and desired status of
a system, to recommend search options and concrete solution
steps to guide workers along the fixing process without being
overwhelmed by the complexity of the overall system of systems.
We demonstrate the feasibility of our approach using a lab-scal
production cell model.

Index Terms—Automation systems; information models;
worker assistance; debugging; root cause analysis; cyber physical
systems

I. INTRODUCTION

A production plant often requires the integration of cyber
physical production systems implemented by different man-
ufacturers. Manufacturers use different platforms to develop
their platforms, which interact and form a system of systems
(SoS). In case of bugs occurring in this SoS, a debugging
tool tailored to a certain platform will only be able to access
systems built on this platform.

Due to the interconnected nature of shopfloors, an undesirable
phenomenon in one machine might cause a misbehavior in
another connected machine, and hence searching for the root
cause quickly becomes very tedious as there are many possible
connections. Connections exist at the same hierarchical level,
between systems (horizontally) as well as between layers
like hardware, software, communication (vertically). Guidance
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based on system models helps to better understand how these
machines depend on each other.

In this paper, we identify available information at the level
of system and SoS and an approach to consolidate this
information to enable tracking of bugs for systems of cyber
physical production systems.

Section II will describe a small scenario to further illustrate
the challenges addressed by this paper. Section III discusses
existing works and their limitations. Section IV shows how
to generate debugging assistance by reasoning on a holistic
model created from model fragments. Section V discusses in
detail which information was applied in our use case. We
demonstrate the feasibility of our approach in a use case
presented in Section VII. We conclude our paper in Section
VIII and provide an outlook.

II. MOTIVATING SCENARIO

A simplified production cell in our motivating scenario, in-

spired by one of our industry partner’s setups, is composed of
the following systems: an injection molding machine (IMM),
a handling robot, and a safety fencing. The safety fencing
activates a light barrier when closed. IMM and handling robot
operate only with a closed safety fencing.
We assume that a worker closes the safety fencing and intends
to start production, being stopped by an error message on the
IMM’s display: “Safety fencing is open”. Many error sources
are likely to lead to this unexpected behaviour:

« The safety fencing might not have been closed properly.

o The light barrier might be broken.

o The signal interface of the safety fencing’s controller

might be broken.

« The safety fencing might have lost network connection.

o In case robot and IMM are daisy chained, the robot might

not have re-transmitted the information to the IMM.
Most items in this list could be investigated by the worker
directly, without remote assistance from a support technician.
Yet, it cannot be expected that every worker conceives every
possible error source. Moreover, with sufficient information
on the systems’ states and their interconnection, some error
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sources can be excluded beforehand, while others become
more probable to cause the observed malfunction.

This is where our proposed approach comes in, to help with
the reasoning about which elements to examine, and which
examination order might lead to a bug fix the quickest.

III. RELATED WORK

Assistance in fixing bugs in pure software environments has

been investigated for a long time already [1][2][3]. Develop-
ments towards higher-level programming languages have led
to more complex software requiring a multitude of debugging
strategies [4] for correct execution.
Bugs in distributed and event-based systems are an active field
of research. Some are well applicable to our scenario, whilst
others are restricted by certain properties.
Causal Consistent Replay Debugging [5] logs every interaction
in functional and concurrent programming languages that are
based on message passing. The paper presents rules that allow
to replay the program backward and forward in time, allowing
to follow clearly how a certain bug arose in a run of a program.
So far, only an Erlang implementation exists. Also, to produce
the logs, the program has to be compiled with additional
instrumentation code.
Causality-Guided Adaptive Interventional Debugging [6] pre-
dicts the location of faults in source by running a high number
of program variants, with different inputs and versions with
injected faults. Such techniques are only applicable to digital
twins of production equipment.
Consistent Retrospective Snapshots [7] are used to create
a totally ordered event-log for a system of event-sourced
systems. This log allows to replay the system by feeding it
with the logged events. An implementation exists only in Java
so far.
In [8] a formalization of a debugging framework for com-
municating event-loops is given. The paper leaves the imple-
mentation of such a debugger as future work. Communicating
event-loops are a generalisation of actor-based systems in the
sense of Hewitt [9], which are suited well to model systems
of cyber physical production systems.

n [10], Marra et. al. connect a monitoring application de-
veloped in the Pharo programming language to access sensor
values on a GrovePi board. Although the case study is limited
to a very tiny example, it allows to showcase different debug-
ging techniques.

Mixed Dimensional Displays as described in [11] are a great
tool to convey debugging information to workers, but still need

a concept to create recommendations for next steps with a high
probability to solve the issue.

Reflective Epidemic Debugging as described in [12] allows to
debug an actor-based system while actors are in an idle state.
The framework is implemented in the Ambient Talk language.
One concern is, that bugs will very likely arise in non-idle-
states.

Geels, Altekar, Shenker, and Stoica describe replay debug-
ging for distributed systems in [13]. Their approach targets
processes and applications hosted on one linux machine and

requires a modified GNU debugger.

Several approaches study debugging at a level of behavior
models, like UML [14] [15], COLA [16] and UML-RT [17]
[18]. These approaches assume inputs before execution and
hence cannot be applied in production, where system states
and inputs arise by execution in an incompletely controllable
context and environment.

In case of production plants, systems of many different ven-
dors are working together. Many of them will be closed-source
and expose information only via a standardized and restricted
set of interfaces. This limits the use of above approaches.
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Check
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Fig. 1. Overall structure of model based debugging assistance

IV. MODEL BASED ASSISTANCE FOR DEBUGGING

Our approach makes use of partial information available
in different models, each a standard interface for production
machinery. A rough outline of the overall approach is given
in Figure 1.

For a given production plant, the recommender has to run
through a starting procedure once (0). First, the production
machinery is discovered and browsed for usable information
(1). Information is processed and stored as model fragments.
Wherever possible, links are created between the model frag-
ments to form a holistic model of the production plant (2).
The recommender is now ready to assist in debugging.

Latest at discovery of a malfunction (3) in the production plant,
the recommender ought to be started. The worker fixing the
malfunction expresses the expected and observed behavior of
the malfunctioning subsystem to an oracle, which retrieves
the desired state (4) of the subsystem. The current state of the
subsystem can be polled from the subsystem. Current state,
desired state, and the holistic plant model allow reasoning to
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create recommendations (5) for the worker. Recommendations
take the form of checking a certain component of a subsystem,
or checking a link between subsystems (6). If the problem
was not solved by this check (7), the next recommendation is
computed, until the malfunction is cleared (8).

The holistic model is represented as an undirected graph
of three different node types: components, ports, and model
references. The edges between nodes are annotated to pro-
vide additional information when navigating the graph. For
example, the edge from a port into a model reference node
identifies which element in the model itself represents the
port. The model reference node describes where to find the
actual model. An edge between two ports identifies how two
components interact with each other. A component has edges
to its subcomponents. One can think of the holistic model
as a jigsaw puzzle where individual puzzle pieces represent
different model fragments that describe different concerns
(see Figure 2). Without a recommender, the procedure of
identifying the root cause has the user start at a node where
a behavior deviation is observed (circled start node Figure 3
upper left). Navigating one edge down, the user encounters a
well behaving node (indicated by “OK” ) and then proceeds to
investigate other nodes (marked grey) until identifying the root
cause node (indicated by “error”). In a realistic scenario the
possible paths are many and long, hence our approach aims to
reduce the set of navigation paths that are most likely to lead
to the root cause. Section VII provides a visualization excerpt
of an example holistic model.

The following Section describes a representative selection
of model fragments and how the holistic model may be put
together from various sources.

V. MODEL FRAGMENTS

During its life cycle, a production plant is described by
many partial models. To support the search for the root cause
horizontally and vertically in a distributed SoS, we need at
least three types of models: device information (describing
how components are deconstructed into subcomponents down
to hardware), behavior models (how software components
react), and wiring models (the topology of distributed com-
ponent interactions across process boundaries). We introduce
one candidate model for each of these categories.

A. Device Topology

Each system may consist of subsystems. Subsystems may
be connected with each other, forming a topology. Con-
nections are realised via ports, that are connected to other
ports. Connections are either uni- or bidirectional. Usually
in systems, a coordinator subsystem aggregates information
of subsystems and orchestrates the components’ behaviors. A
reduced example for the subsystems of a manufacturing cell
is given in Figure 4 where the cell consists of a Moulding
Machine, a Tempering Device, and a Safety Fence, which in
turn consists of a Light Barrier, an Emergency Button, and a
Fence Gate.

Information of systems and subsystems is available at con-
nection points, and is exchanged via connections between
connection points. Some connections within the Safety Fence
subsystem are given in Figure 5. Here the Safety Fence
exposes three ports, one connected to each subcomponent. The
OPC UA Device Integration specification [19] details, how
such information is structured in case the system uses OPC
UA as communication protocol.

B. Wiring Information

The devices providing their topological self-description in-
teract at the production plant level. In order to standardise such
information, skills [20][21] have been proposed and modeled
as OPC UA programs. Alternative model approaches describe
the provisioning and requiring of capabilities [22]. In [23] we
have shown, how a dynamic reconfiguration of the plant level
topology can be realised with little overhead. The topology
configuration (“wiring”) is split and the necessary parts are
distributed to the devices. From the devices these parts can be
gathered later to reconstruct the overall topology.

C. System Behavior

Software and control engineers use state machine diagrams

to capture behavior of a system, device, or component. To
ensure interoperability, machine vendors agree on standard
behaviors. For example, a widely adopted standard is the
PackML state machine [24].
To model and store state machines in a machine-readable way,
we relied on UML stored in standard XML format. Our recom-
mender utilizes the following UML elements: UML events are
described in UML interfaces. UML components then exhibit
in ports and out ports that reference these interfaces. The ports
of UML components are linked to describe which components
interact with each other within one system context (i.e., within
on system process). Recall that interaction across system and
network processes is described via wiring information (see
previous subsection). Each component contains a UML state
machine that describes which UML events cause which state
transitions. For each UML state, there exists a minimal UML
activity diagram that describes whether that state leads to the
sending of an event via one of the UML component’s ports.

Note that UML is just one possible candidate to describe
such behavior. Our approach merely requires the description
of behavior in the form of a state machine, what mes-
sages/requests are dispatched in which states via which ports to
what other components, and which events arrive at which port
to trigger transitions in the state machine. The State machine
in Figure 6 describes that the safety fence transitions from the
“Active” state to the “Inactive” state when the light barrier is
free, and the emergency button is released. With the connected
device models one can obtain insights that the events for
these two conditions arrive via port A and B of the Safety
Fence, hence navigate further down into the light barrier and
emergency button to inspect their status.

Component Hierarchy, Wiring Information, and System
Behavior are, of course, not a complete set of models to handle
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all issues arising during production. Still, they are examples
sophisticated enough to show the benefits of our approach
when tracing the links between these models. Our approach
allows to include additional model types through the use of
an adapter pattern between models and the reasoning engine.
One example would be the inclusion of the electrical layout
(e.g., eplan models) to understand which combination of input
signals will lead to which combination of output signals to
identify deviations from the expected signal status.

D. Model Fragment Discovery and Merging

The model fragments are combined to form a graph, as
illustrated in Figure 2. Nodes are enriched with information
containing type of information, metadata, pointers to detailed
models. For our recommender prototype implementation, we
rely on our OPC UA wiring information model to describe
the dependencies between capabilities. Each capability then
refers to a UML model and provides the UML port identifier
that establishes the mapping between the OPC UA level
capability and the UML port defined in the UML model. An
alternative mechanism to provide model information is via
AutomationML (e.g., see [25]).

VI. RECOMMENDATION GENERATION

The recommender is given the node of the observed mal-
function, together with the desired state of the node. Such
information is typically available in the form of system docu-
mentation or defined in requirements. The recommender then

Fig. 6. Simplified behavior of a Safety Fence
subsystem

retrieves the current status of the component associated with
the node. Here, a standardized mapping of state machine status
to OPC UA simplifies the lookup of such information, e.g.,
for PackML see [21]. It then starts to traverse this graph from
this given node, as is illustrated in Figure 3. Depending on
the types of the connected nodes, specific reasoning is carried
out on each traversal step to compute the desired state for
the connected node. The table in Figure 7 lists the possible
scenarios for the model used in the current use case.

e Check Connection If an expected message did not arrive
via the IN port, either the connection is faulty. Here faulty
depends on the connection type. A physical connection
might be subject to a broke wire or a loose plug. A
network connection might be subject to an incorrect
endpoint configuration, network partitioning, or authenti-
cation failure. The extent of recommender support here
depends on the available modeling granularity. Or, if the
connection is working, the message was not sent at the
OUT port. Hence, the algorithm continues to search via
edges from the OUT port.

o Message Inferring If a message is required to transition
from the current state to the desired state, and the message
is received via this port, then the algorithm proceeds to
check this port for this message.

o State Inferring If a message was expected to be sent from
the port, the algorithm looks up the behavior model for
the state in which this message would have been sent
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from. If the current state differs from this desired state,
the search is continued from this node.

o Message and State Inferring If the IN component is in a
different state than expected, the algorithm looks up the
behavior model for the transitions from current to desired
state. The next expected trigger message is then used in
an immediate State Inferring. If the message is sent by
another component matching the OUT component, the
desired state is determined for that component and the
search continues from there.

These steps continue, until the problem is solved, or the graph
has been exhaustively traversed.

Applied to our motivating scenario, lets assume, the rec-
ommender has determined that the moulding machine state
machine difference is a missing “Safety Fence Inactive” event
via analysing the moulding machines UML model. It then
identifies the port in the UML model through which this signal
is received, maps this port to the holistic model port, traverses
the holistic model to the port of the safety fence that provides
this event and obtains the safety fence UML model. If this state
machine is in the inactive state, the algorithm can identify
the edge between the two ports as the potential root cause.
If not, it analyses the safety fence state machine in which
events are received to arrive in the Inactive state and the ports
through which these events arrive and continues there. Note
that this traversal requires no domain knowledge about any of
the involved systems.

To Model
From Port Reference Component
Port Check Stat.e
Connection | Inferring
Model Message State
Reference Inferring Inferring
Message and
Component State Inferring

Fig. 7. Reasoning Options

Fig. 8. Lab-scale Production Cell

VII. EVALUATION BASED ON USE CASE

To demonstrate the feasibility of our approach we applied
it on our existing lab-scale production cell, the “Factory in a
Box” (FIAB) as depicted in Figure 8.

A. Use Case

The purpose of the FIAB is to serve as a whitebox produc-
tion plant with full control over configuration and software.
This allows to tailor software to the needs of flexible produc-
tion and employ new control and monitoring concepts.

The FIAB is capable of creating pictures at a level of mass
customization. Each station provides the capability of drawing
in one color. The stations are able to draw arbitrary graphics.
The production plant is completed by an input station, an
output station, and turntables able to receive products from
and deliver them to each of their sides.

Not shown in the picture is the manufacturing execution sys-
tem (MES). The MES consists of an order agent managing the
production orders and issuing drawing commands to plotting
stations. The order agent also triggers a transportation agent
that controls the routing of products between the stations.
Any synchronisation between stations happens without in-
tervention from the MES. E.g. a plotting station is only
informed to plot the product, its neighbouring turntable is
ordered to load a product from its western side. Plotting
station and turntable then establish a direct connection to
negotiate readiness for handover and acknowledge the finished
loading operation. Only the transportation agent is required
to be aware of the absolute layout of the production plant,
individual systems only know about the location of required
skills provided by neighbours.

We used the Lego Mindstorms EV3 platform as it is a
complete ecosystem of thoroughly tested actuators, sensors
and controllers. This allowed seamless integration and cheap,
fast prototyping of the stations. Communication between sta-
tions is based on OPC UA only. To create a more diverse
environment, we used different programming languages for the
stations. Plotters, as well as the input and output stations are
programmed according to the IEC 61499 industry standard.
We used the implementation provided by the Eclipse 4diac
together with the FORTE runtime environment hosting an
open62541 OPC UA server. The turntable software is im-
plemented in Java, using the Eclipse Milo OPC UA server
implementation. Thus, control software and communication
infrastructure can be considered industry grade.

B. Models created for evaluation

The behaviour of plotting stations and turntable was mod-
eled following the PackML [24] standard. To make the
behaviour accessible to our debugging assistance, the state
machines were modelled in Eclipse Papyrus standard UML,
as illustrated in Figure 10. Transitions are guarded by events
triggered by signals. A signal is sent on entering a state.
When developing a commercial system, such behavior models
very likely were already created during early phases of the
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Fig. 9. OPC UA based provisioning of wiring and device information.

development process and are hence available during commis-
sioning and runtime.

The device information and wiring information [23] is
directly exposed via OPC UA. Figure 9 displays a partially
unfolded OPC UA node set screenshot as browsed with the
Unified Automation UAExpert client. Note the exemplary
WIRING_INFO folder that provides information to which
endpoint the handshake west component is connected to for
fulfilling its “handshake” capability and the hardware folder
describing the set of motors, PLC and sensors, as well as their
links. This information is automatically generated from within
the deployed software at runtime.

C. The resulting assisting graph

Our implemented prototype parsed structural hierarchy,
wiring information and the UML diagrams to create graph
fragments and scanned for matching system URIs, which
serve as connection points. We are aware, that graphs are
difficult to display. Yet, with the dimensions of our use case,
a representation of the resulting information model is given in
Figure 11.

D. Manual evaluation

By feeding the graph with status information from the
discovered systems, seeding faulty states and triggering the
debugging assistance with deviating desired states, the algo-
rithm was inferring the missing messages and recommending
correct actions along the search process.

VIII. CONCLUSION

Debugging the distributed systems of systems will become
a common scenario during commissioning and operation of
shopfloors in industry 4.0. In this papers we presented a
novel approach to connect models present at design-time
and runtime, together with states of individual systems, to
recommend actions to resolve existing bugs in production
machinery. We evaluated the feasibility of our approach in
a lab-scale production cell.
Future work would include the assessment of additional over-
head in creating models for real use cases, compared to the
effort saved when tracking down errors. Further research could
also include a history of bugfixes from other machines to give
higher weight to likelier solutions.
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